organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Çiğdem Yüksektepe,^a Mustafa Serkan Soylu,^a* Hanife Saraçoğlu,^a Ibrahim Yılmaz,^b Alaaddin Çukurovali^b and Nezihe Çalışkan^a

^aDepartment of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ^bDepartment of Chemistry, Arts and Sciences Faculty, Fırat University, 23119 Elazığ, Turkey

Correspondence e-mail: mssoylu@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.035 wR factor = 0.075 Data-to-parameter ratio = 14.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 2-({4-[3-Methyl-3-(2,4,6-trimethylphenyl)cyclobutyl]-3*H*-thiazol-2-ylidene}hydrazonomethyl)benzene-1,4diol ethanol solvate

In the title compound, $C_{24}H_{27}N_3O_2S \cdot C_2H_6O$, the dihedral angle between the least-squares planes of the 2,5-dihydroxybenzene ring and the mesityl group is 78.59 (6)°. An intramolecular $O-H \cdot \cdot \cdot N$ hydrogen bond is observed in the molecular structure. Centrosymmetrically related molecules are linked by $N-H \cdot \cdot \cdot O$ intermolecular hydrogen bonds to form a dimer. The dimers are interlinked by $O-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot N$ intermolecular hydrogen bonds involving the ethanol molecule of crystallization to form chains along the *a* axis. Received 9 March 2005 Accepted 17 March 2005 Online 31 March 2005

Comment

Various hydrazone compounds possess strong bactericidal, herbicidal, insecticidal and fungicidal properties (Sahni et al., 1977). In addition, hydrazones have analytical applications (Jensen & Pflaum, 1967). Most Schiff bases have antibacterial, anticancer, anti-inflammatory and antitoxic activities (Williams, 1972), and the sulfur-containing Schiff bases are particularly effective. Schiff bases have been used extensively as ligands in the field of coordination chemistry (Calligaris et al., 1972). The intramolecular hydrogen bond between the O and N atoms plays an important role in the formation of metal complexes and Schiff base compounds in the solid state via proton transfer from the hydroxy O atom to the imine N atom (Hadjoudis et al., 1987; Xu et al., 1994). Benzothiazolium groups have been used in organic dyes as either electronwithdrawing or electron-donating substituents, depending on whether the N atom is cationic or not (Zollinger, 1991).

A view of the asymmetric unit with the atom-labelling scheme is shown in Fig. 1. The thiazole ring and mesityl group are each planar. In the mesityl group, atom C5 deviates by 0.034 (1) Å from the mean plane through the C5–C10 ring. In the thiazole ring, the S1–C16 and S1–C17 bond lengths (Table 1) are shorter than the accepted value for an $S-Csp^2$ single bond (1.762 Å for C–S; Allen, 1984). Variations in C16=C15, C15–N1, N1–C17, C17=N2, N2–N3 and N3=C18 bond lengths (Table 1) confirm electron delocalization along the -C16=C15–N1–C17=N2–N3=C18-segment. The dihedral angles between 2,5-dihydroxybenzene

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved plane A (C19–C24), thiazole plane B (N1/S1/C15–C17) and mesityl plane C (C5–C10) are $A/B = 12.64 (12)^{\circ}$, A/C =78.59 (6)° and $C/D = 76.70 (6)^{\circ}$. In the cyclobutane ring, the C4/C1/C2 plane forms a dihedral angle of 26.8 (2)° with the C2/C3/C4 plane. Literature values for the puckering of the cyclobutane ring are 23.5° (Swenson *et al.*, 1997) and 29.03 (13)° (Yüksektepe *et al.*, 2004).

An intramolecular $O-H\cdots N$ hydrogen bond is observed in the molecular structure. Atom N1 of the thiazole ring behaves as a donor in $N-H\cdots O$ intermolecular hydrogen bonds around inversion centres, forming dimers (Table 2). The dimers are interlinked *via* an ethanol molecule of crystallization by $O-H\cdots O$ and $O-H\cdots N$ intermolecular hydrogen bonds into chains along the *a* axis (Fig. 2).

Experimental

To a suspension of 1-(2,5-dihydroxybenzylidene)thiosemicarbazide (1.056 g, 5 mmol) in DMSO (30 ml), a solution of 1-methyl-1-mesityl-3-(2-chloro-1-oxoethyl)cyclobutane (1.3225 g, 5 mmol) in absolute ethanol (20 ml) was added dropwise at *ca* 303–313 K with continuous stirring. After the addition of the α -haloketone, the temperature was raised to 323–328 K. The solution was then made alkaline with an aqueous solution of NH₃ (5%), and an orange precipitate separated. The precipitate was filtered off, washed with aqueous NH₃ solution several times and dried in air. Suitable single crystals for crystal structure determination were obtained by slow evaporation of an ethanol solution.

Crystal data

$C_{24}H_{27}N_3O_2S \cdot C_2H_6C$
$M_r = 467.61$
Triclinic, P1
a = 7.5304 (9) Å
<i>b</i> = 12.5739 (16) Å
c = 14.5935 (18) Å
$\alpha = 65.678 \ (9)^{\circ}$
$\beta = 84.257 \ (10)^{\circ}$
$\gamma = 89.335 \ (10)^{\circ}$
V = 1252.2 (3) Å ³

Data collection

Stoe IPDS-II diffractometer φ scans Absorption correction: integration (*X*-*RED32*; Stoe & Cie, 2002) $T_{min} = 0.953$, $T_{max} = 0.958$ 16 210 measured reflections 4402 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.075$ S = 0.804402 reflections 306 parameters Z = 2 $D_x = 1.240 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 8264 reflections $\theta = 1.5-26.6^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 293 (2) K Prism, yellow $0.30 \times 0.28 \times 0.27 \text{ mm}$

2329 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.050$ $\theta_{\text{max}} = 25.0^{\circ}$ $h = -8 \rightarrow 8$ $k = -14 \rightarrow 14$ $l = -17 \rightarrow 17$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.034P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e} \text{ Å}^{-3}$

Figure 1

An *ORTEP-3* (Farrugia, 1997) drawing of the asymmetric unit, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing of the title compound, viewed down the b axis, showing hydrogen-bonded chains. Hydrogen bonds are indicated by dashed lines. H atoms have been omitted.

Table 1 Selected geometric parameters (Å, °).

1.734 (2)	C1-C15	1.477 (3)
1.738 (2)	C1-C4	1.526 (3)
1.359 (2)	C1-C2	1.543 (3)
1.388 (2)	C2-C3	1.558 (3)
1.299 (2)	C3-C4	1.561 (2)
1.399 (2)	C15-C16	1.333 (2)
1.286 (2)		
90.50 (10)	C1-C2-C3	89.74 (15)
115.95 (17)	C2-C3-C4	85.89 (14)
111.07 (16)	C1-C4-C3	90.24 (14)
87.61 (14)		
171.75 (17)	N2-N3-C18-C19	178.66 (18)
2.8 (3)	N3-C18-C19-C20	-6.3 (3)
	1.734 (2) 1.738 (2) 1.359 (2) 1.388 (2) 1.299 (2) 1.299 (2) 1.286 (2) 90.50 (10) 115.95 (17) 111.07 (16) 87.61 (14) 171.75 (17) 2.8 (3)	$\begin{array}{cccccc} 1.734 & (2) & C1-C15 \\ 1.738 & (2) & C1-C4 \\ 1.359 & (2) & C1-C2 \\ 1.388 & (2) & C2-C3 \\ 1.299 & (2) & C3-C4 \\ 1.399 & (2) & C15-C16 \\ 1.286 & (2) \\ \hline & 90.50 & (10) & C1-C2-C3 \\ 115.95 & (17) & C2-C3-C4 \\ 111.07 & (16) & C1-C4-C3 \\ 87.61 & (14) \\ \hline & 171.75 & (17) & N2-N3-C18-C19 \\ 2.8 & (3) & N3-C18-C19-C20 \\ \hline \end{array}$

Table 2	
Hydrogen-bond	geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$	
$ \begin{array}{c} N1 - H1N \cdots O2^{i} \\ O2 - H2O \cdots O3^{ii} \\ O3 - H3 \cdots N2^{iii} \\ O1 - H1O \cdots N3 \end{array} $	0.83 (2)	2.30 (2)	3.099 (2)	164 (2)	
	0.82	1.87	2.678 (2)	167	
	0.82	2.26	2.844 (2)	128	
	0.82	1.98	2.700 (2)	147	

Symmetry codes: (i) -x, -y, -z; (ii) x - 1, y, z - 1; (iii) -x, -y, -z + 1.

Atom H1*N* was located in a difference Fourier map and refined isotropically. All other H atoms were placed in calculated positions (O-H = 0.82 Å and C-H = 0.93-0.98 Å) and refined using a riding model. Their $U_{\rm iso}(H)$ values were constrained to be 1.2 (1.5 for hydroxy and methyl groups) times $U_{\rm eq}$ of the parent atom.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Allen, F. H. (1984). Acta Cryst. B40, 64-72.
- Calligaris, M., Nardin, G. M. J. & Randaccio, C. (1972). Coord. Chem. 7, 385–389.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hadjoudis, E., Vittorakis, M. & Moustakali-Mavradis, I. (1987). *Tetrahedron*, **43**, 1345–1360.
- Jensen, R. E. & Pflaum, R. T. (1967). Anal. Chim. Acta, 37, 397-400.
- Sahni, S. K., Sangal, S. K., Gupta, S. P. & Rana V. B. (1977). J. Inorg. Nucl.
- Chem. **39**, 1098–1100. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Swenson, D. C., Yamamoto, M. & Burton, D. J. (1997). Acta Cryst. C53, 1445– 1447.
- Williams, D. R. (1972). Chem. Rev. 72, 203-213.
- Xu, X. -X., You, X. -Z., Sun, Z. -F., Wang, X. & Liu, H. -X. (1994). Acta Cryst. C50, 1169–1171.
- Yüksektepe, C., Saraçoglu, H., Koca, M., Çukurovali, A. & Çaliskan, N. (2004). Acta Cryst. C60, 0509–0510.
- Zollinger, H. (1991). Colour Chemistry, Syntheses, Properties and Applications of Organic Dyes and Pigments, 2nd ed. Weinheim: VCH.